
On spectral statistics of classically integrable systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 4669

(http://iopscience.iop.org/0305-4470/31/20/008)

Download details:

IP Address: 171.66.16.122

The article was downloaded on 02/06/2010 at 06:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 4669–4704. Printed in the UK PII: S0305-4470(98)90628-X

On spectral statistics of classically integrable systems

Marko Robnik† and Gregor Veble‡
Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2,
SLO-2000 Maribor, Slovenia

Received 12 January 1998, in final form 3 March 1998

Abstract. This work is an extensive study of the spectral statistics of three representative
classically integrable systems, namely rectangle, torus and circle billiards. We analyse the
E(k, L) statistics and focus on the related level spacing distributionP(S) and the delta statistics
1(L). The agreement with the Poissonian model istypically found to be perfect up to the outer
(unfolded) energy scaleL < Lmax, beyond which the saturation is observed, in agreement with
Berry’s dynamical theory of the spectral rigidity, whereLmax→∞ ash̄→ 0.

The untypical systems are those, where for exampleP(S) is not a smooth distribution but
a sum of the delta functions, due to the ‘granularity’ of the energy scale, for example in the
rectangle with the rational squared sides ratio. However, even there we find reasonable trend
towards Poissonian statistics for large rangesL but L 6 Lmax. We describe theoretically and
numerically the broadening of the delta spikes when the rectangular billiard is slightly distorted
away from a rational to an irrational shape and find excellent agreement. Also, in irrational
rectangle billiards we show and explain the existence of large fluctuations, by one order of
magnitude bigger than the statistical ones, whose origin is in the closeness to some rational
billiard shape. These fluctuations and their amplitude are independent of the energy if the bin
size shrinks inversely with energy.

Finally we tested the mode distribution (i.e. distribution of the reduced mode fluctuation
numberW ) and found that it was not Poissonian, in agreement with Steiner’s conjecture, and
in fact follows the prediction by Bleheret al, that its tail behaves as exp(−W4). The general
reason for non-universal behaviour ofP(W) is that at largest energy scales we are always in
the saturation regimeL > Lmax.

1. Introduction

The spectral statistics of classically integrable systems has been assumed to obey the
Poissonian laws at all rangesL of the unfolded spectrum in the strict semiclassical limit
when the Planck constant goes to zero, ¯h→ 0, and we collect asymptotically infinitely many
levels in a given (narrow) energy interval, within which the classical dynamics is sharply
defined and has the same phase portrait at all energies inside. The class of integrable systems
thus constitutes the Poissonian universality class of spectral fluctuations, to be distinguished
from the GOE and GUE ensembles of random matrices, which—according to the Bohigas
conjecture (Bohigaset al 1984)—correctly describe the spectral statistics of the fully chaotic
systems (ergodic or more chaotic), depending on whether they have a time reversal symmetry
(GOE), or not (GUE) (or any other antiunitary symmetry (Berry and Robnik 1986, Robnik
and Berry 1986, Robnik 1986), for some modifications see also Leyvrazet al (1996) and
Keating and Robbins (1997)). After the early contributions towards a proof of the Bohigas
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conjecture by Berry (1985) there was more than a decade of theoretical silence, broken
recently by a paper by Andreevet al (1996), which is still conjectural but has the potential
of a rigorous proof. Further work along these lines is in progress (Keating and Bogomolny
1996, Weidenm̈uller 1997).

For an excellent review of quantum chaos see the recent paper by Weidenmüller et al
(Guhr et al 1997).

In view of the integrable (Poissonian) universality class we have the early work by
Berry and Tabor (1977), based on the torus quantization approximation, i.e. the EBK or
WKB approximation. However, since EBK is only an approximation, their result is a
rather lucky circumstance, because Poissonian statistics has no level repulsion phenomenon.
The level spacing distribution isP(S) = exp(−S), and thusP(S 6= 0) 6= 0. Namely,
the phenomenon of the energy level repulsion cannot be captured by any semiclassical
approximation at any order (Robnik 1986, Prosen and Robnik 1993, Robnik and Salasnich
1997a, b). Heuristically, Poissonian statistics is quite obvious if we have two or more degrees
of freedom and therefore two or more integrals of motion and two or more quantum numbers.
Essentially we superpose an infinite number of number sequences of equal statistical weight
and thus the result ought to be Poissonian (Robnik 1986), except when the mean spacings
are somehow rationally connected such that for example the limitingP(S) does not exist,
but is a sum of delta functions instead. This has been assumed to hold true for quite some
time, with the intermediate period of some new discoveries (Casatiet al 1985, Seligman
and Verbaarschot 1986, Feingold 1985) and discussions, which brought some reservations.
Later, it was shown by Shnirelman (1993), that quite generally in systems with time reversal
symmetry one should observe the so-called Shnirelman peak, i.e. the delta function peak
of P(S) at S = 0. However this can usually be quite easily removed by considering and
separating the symmetries of the system. What is left in an integrable system after such
desymmetrization is a spectrum with the Poissonian statistics. Recently it was shown (Bleher
et al 1993) that in some special integrable systems we find deviations from the Poissonian
behaviour in the so-called mode distributionP(W) (= the distribution of the reduced mode
fluctuation numberW ). Steiner (1994) postulated that this distribution should behave non-
Gaussian in integrable systems, and Gaussian in chaotic systems (GOE, GUE). We shall
discuss this in detail and show how that is compatible with the Poissonian behaviour for
example of theE(k, L) statistics up toL 6 Lmax. The explanation is that on the largest
energy ranges implicitly contained in the statistics ofW we are always in the non-universal,
dynamical saturation regimeL > Lmax.

The non-universal but generic classes of behaviour (of systems with mixed classical
dynamics such as, e.g. KAM-type systems) will not be discussed in this work, although
they are in a sense the most important ones. They can be understood theoretically once the
universality classes are understood (Berry and Robnik 1984, Prosen and Robnik 1993a, b,
1994a, b, Robnik 1997, Robnik and Prosen 1997).

The main message of this paper is that the Poissonian model is almost perfect for the
classically integrable systems that we study here, although the untypical systems can of
course deviate from that model, and their vicinity affects the approach to the high-energy
Poissonian behaviour even in typical integrable systems such as irrational rectangle billiards.

The untypical systems are those, where for exampleP(S) is not a smooth distribution
but a sum of the delta functions instead, due to the ‘granularity’ of the energy scale, for
example in the rectangle with the rational squared sides ratio. However, even there, we find
a reasonable trend towards Poissonian statistics for large rangesL. We shall describe both
theoretically and numerically what happens when the rectangle billiard is slightly distorted
away from a rational to an irrational shape. The delta spikes broaden and we illustrate
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numerically our excellent theoretical prediction of this broadening. Also, in irrational
rectangle billiards we show and explain the existence of large fluctuations, by an order
of magnitude bigger than the statistical (Poissonian) ones, whose origin is in the closeness
to some rational billiard shape. These fluctuations and their amplitude are independent of
the energy if the bin size shrinks reciprocally with the (unfolded) energy.

This paper is organized as follows. First we shall present some basic definitions,
concepts and theoretical results, then we show the results and theory for the rectangle
billiard, followed by the torus and the circle billiards, concluding with general results and
discussions.

2. Some definitions and basic concepts

We shall assume that all our spectra are unfolded. This means that the sequence of the
actual (physical) energy levels

{E1, E2, . . . , Ei, . . .} (1)

is transformed to the sequence of numbers{xi} using the mean density of levels

ρ(E) = 1

(2πh̄)f

∫
δ(E −H(q,p)) df q dfp (2)

whereδ(E − H) is the Dirac delta function,f is the number of degrees of freedom,q,p
are the coordinates and momenta in the classical phase space andH(q,p) is the classical
Hamilton function of the underlying Hamiltonian system whose quantal statistics shall be
analysed. Equation (2) is nothing but the Thomas–Fermi rule. It is the leading term of the
famous Weyl formula for billiard systems. Denoting the cumulative mean number of levels
up to the energyE by

N(E) =
∫ E

−∞
ρ(z) dz (3)

we definethe unfolded energyxi as

xi = N(Ei). (4)

Therefore the spectral staircase function after the unfolding procedure can be written as

N(x) =
∞∑
i=1

2(x − xi) (5)

where2(x) is the Heaviside unit step function.N(x) can be split into the mean smooth
part x and the fluctuating partNfluc(x),

N(x) = x +Nfluc(x) (6)

where the construction of the unfolded spectrum{xi} now has a unit mean level spacing,
whilst the average ofNfluc(x) over a suitable energy range of the same unfolded spectrum
vanishes by definition. The two most important spectral measures will be considered, the
level spacing distributionP(S), and the1 statistics defined in the standard way by

1(L) =
〈
minA,B

1

L

∫ α+L

α

[N(x)− Ax − B]2 dx

〉
α

. (7)

Sometimes it is useful to also know the number variance, denoted by62(L), the dispersion
of the number of levelsn(L) in an interval of lengthL, where〈n(L)〉 = L, and

62(L) = 〈(n(L)− L)2〉 = L− 2
∫ L

0
(L− r)Y2(r) dr (8)
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whereY2(r) is the pair cluster function (Bohigas 1991, Haake 1992, Mehta 1991). There
also exists a connection between62 and1,

1(L) = 2

L4

∫ L

0
(L3− 2L2r + r3)62(r) dr (9)

although, strictly speaking, this has heretofore been proven only within the context of RMT
(Aurich et al 1997, Mehta 1991). Finally, we shall consider not the set of all the cluster
functionsYn(x1, x2, . . . , xn), wheren = 2, 3, . . . , but rather the so-calledE(k, L) statistics,
for all k = 0, 1, 2, . . . , following the suggestion of Steiner and co-workers (Aurichet al
1997), because they are very easy to calculate numerically and yet contain all information
concerning spectral statistics. By definitionE(k, L) is the probability that inside an interval
of length L we find exactlyk levels. There are simple relationships to other statistical
quantities. For example, the level spacing distributionP(S) is

P(S) = ∂2

∂L2
E(k = 0, L = S) (10)

and

62(L) =
∞∑
k=0

(k − L)2E(k, L) (11)

and therefore, through (9), we have the relation expressing1(L) in terms of theE(k, L)
statistics.

We now state the results for the Poissonian statistics. By definition the Poissonian
statistics is such that if they are on the averageL events, then the probability to actually
observek events is given by

EPoisson(k, L) = Lk

k!
exp(−L). (12)

From this definition it is easily derived (see (10))

PPoisson(S) = exp(−S) (13)

and after (11)

62
Poisson(L) = L (14)

and then using (9)

1Poisson(L) = L

15
. (15)

Poissonian statistics also means by definition that there are no correlations, i.e. the pair
correlation function factorizes, so that for the pair cluster function we have (cf Mehta 1991,
Bohigas 1991)

Y Poisson
2 (x) = 0. (16)

Thus, applying this fact to equation (8) and then (9) we again recover Poissonian values
(14) and (15).

The most important and convenient objects to observe numerically, or experimentally,
are theE(k, L) statistics. They have a maximum nearL ≈ k which is the range that we
shall observe them most carefully.

Finally we define the mode distribution. By this we mean the distribution ofthe reduced
mode numberW(x), defined by

W(x) = N(x)− x√
D(x)

= Nfluc(x)√
D(x)

(17)
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where

D(x) = γ (c)

(c − 1)x

∫ cx

x

(N(y)− y)2 dy = 〈N2
fluc(x)〉 (18)

whereγ (c) is a correction factor which goes to 1 whenc goes to 1, to be explained below.
By construction,W(x) has a unit dispersion.

The Steiner conjecture (Steiner 1994, Aurichet al 1994) states that in ergodic (or
more chaotic) systems the distribution ofW is Gaussian, which means most random (in
the sense of maximum entropy) under the prescribed value of unit dispersion, whilst in
classically integrable systems it should be non-Gaussian. This is a non-trivial assertion,
because absence of all correlations in the Poissonian spectrum of integrable systems might
imply complete randomness at all scales, also such implicit in the distribution ofW , where
all scales are involved. Therefore at the largest scales, the behaviour of the chaotic spectra
is more random than that of the integrable systems. This can be understood theoretically;
see below. The experience so far supports the Steiner conjecture, including ours herein.

In this work we shall study the quantum mechanics of three billiard systems, rectangle,
torus and circle billiard. In each case we solve the Helmholtz equation (Schrödinger
equation), using the units ¯h2/2m = 1,

1ψ + Eψ = 0 (19)

with the Dirichlet boundary conditions (vanishingψ on the boundary) for rectangle and
circle, and periodic boundary conditions on the torus. Then we can immediately write down
the generalized Weyl formula (whose leading term is the Thomas–Fermi term obtained by
equation (2)),

N(E) = 1

4π
[AE − L

√
E +K] (20)

whereA is the area of the billiard,L is its perimeter (circumference), which is, however,
zero for the torus, andK contains curvature and corner corrections and is equal toπ/3 for
the rectangle,π/2 for the semicircle, and is zero for the torus. In reality, in the unfolding
procedures (4) usually we shall work at such high energies, up tox = N(E) = 1011, that
the leading Thomas–Fermi term of the Weyl formula (20) will be sufficient—but not for
W(x).

3. The rectangle billiards

3.1. The spectrum, unfolding, geometry and preliminaries

Using the units for our billiard systems of equation (19), ¯h2/2m = 1, for the rectangle
billiard with sidesa andb we have the energy spectrum

Em,n = π2

[(m
a

)2
+
(n
b

)2
]

(21)

wherem, n = 1, 2, . . . , and one parameter can be eliminated by unfolding and preserving
the shape, for example by choosinga = π andb = π/√α, so that we obtain

Em,n = m2+ αn2 (22)

and nowα is the only shape parameter. The Weyl formula (20) then reads

N(E) = π

4
√
α
E − 1

2

(
1√
α
+ 1

)√
E + 1

12
. (23)
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It is an interesting observation that at least two leading Weyl terms in (23) can be obtained
purely geometrically by considering the plane(m, n), with m, n = 1, 2, . . . . Inside the
ellipseE 6 Em,n of equation (22) we haveπE/

√
α grid points, and because of the positivity

of m and n, only one quarter of them contribute toN(E). This gives the leading Weyl
term. The next term stems from the fact that in calculating the above one quarter of the
ellipse we have to subtract the two positive semiaxies, whose total length is exactly equal
to the second Weyl term. Finally, we have to add something, because the contributions
from m, n = 0 have been subtracted twice. However, this does not completely reproduce
the third term in (23).

We shall examine the spectra up to as high energies asN(E) ≈ 1011. We have always
used at least the double precision on our computer, with about 15 valid digits, so that
the resolution is only about 10−4 of the mean level spacing, which has been observed to
affect the statistical results. In such cases we had to increase the precision to the quadruple
precision (REAL*16). The calculations at such high energies are possible only because it is
not necessary to memorize all the eigenvalues, but they can be easily and quickly calculated
from the simple formula (22). For the delta statistics such high precision is not necessary,
but the required CPU time is much larger than in calculations of the level spacings.

The preferred value ofα will be α = π
3 , which is the same as in Casatiet al (1985),

and should be assumed if not stated otherwise. Hereafter we denote byE the unfolded
energy, so its value is equal toN(E), i.e. the number of levels belowE. We have chosen
three energy intervals (windows) of sizeEstart/1000 and starting atEstart:
• 106 levels aboveEstart= 109, O1

• 107 levels aboveEstart= 1010, O2

• 108 levels aboveEstart= 1011, O3.

3.2. Level spacing distribution

In figures 1(a)–(c) we showP(S) for the irrational rectangle withα = π/3 for the windows
O1, O2 andO3, respectively. It is seen that the agreement with the Poissonian statistics
P(S) = exp(−S) is perfect. The bin size is1S = 0.001.

At lower energies, say up to aroundE = 100 000 we observe the statistically
unexpectedly large fluctuations around the expected Poissonian value, as shown in figure 2,
also in comparison with the results of Casatiet al (1985). Unfortunately it is impossible
to exactly reproduce their results because they neither give their numerical precision, nor
describe the unfolding procedure (using the full Weyl formula as we do or only the leading
Thomas–Fermi term). The qualitative behaviour can be confirmed, however, especially the
size of fluctuations.

The impression in figures 1(a)–(c) is that the fluctuations around the theoretical
Poissonian values decrease with energy, if the size of the bins1S = 0.001 is fixed, and
they certainly are within the statistically expected limits. In reality the picture is much
more complicated. In figures 3(a)–(c) we show the results forP(S) nearS = 0 for the
lowest 107, 108 and 109 levels, respectively, but such that the bin size1S shrinks with
E so that in each bin we always have approximatelyNb ≈ 10 000 level spacings, and
therefore the expected statistical fluctuations should be roughly

√
1/Nb ≈ 0.01. It can be

seen that the observed fluctuations are clearly much bigger than their expected value and are
approximately of the same size at all energies. We shall show below, that these fluctuations
are due to the fact that the shape parameterα is always (at all energies) in the vicinity of
sufficiently influencial rational values. This is thus definitely also the explanation of the
fluctuations discovered and observed by Casatiet al (1985). In order to ensure that our
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Figure 1. We show the level spacing distribution for the three windowsO1–O3 in (a)–
(c) respectively, in each case with the bin size1S = 0.001. The shape parameter of the
rectangle billiard isα = π/3. The histograms clearly converge towards the theoretical value
P(S) = exp(−S), and the size of the fluctuations also decreases. In the right hand picture in
each case we show the enlarged part nearS = 0, together with the statistically expected±σ
error (dotted) and theoretical Poissonian curve (full curve). The fluctuations here stay within
the statistically expected range.
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Figure 2. We show the results for the irrational rectangleα = π/3 for (unfolded) energies
up to 100 000, forP(S) nearS = 0. The fluctuations (a) are roughly as published by Casati
et al (1985) in (b). We also plot the Poissonian curves (full in (a) and broken in (b)), and the
expected±σ standard deviation.

choice ofα is not an unlucky choice we have checked the corresponding results for the
most irrational value, namely the golden meanα = (√5− 1)/2. The results are practically
unchanged and therefore we do not show them.

3.3. The rational rectangles

The rational rectangle billiardsare defined by their shape parameterα = a2/b2 being a
rational number,

α = q

p
(24)

where q and p are natural numbers without a common divisor. By unfolding the
spectrum (22) withonly the leading term of the Weyl formula(23) we then study the spectrum

Em,n = π

4
√
pq

[pm2+ qn2]. (25)

At very high energies, say up toN(E) ≈ 1011, and asymptotically whenE → ∞, such
an unfolding procedure is certainly satisfactory. Then we immediately see that the energy
levels appear only at the integer multiples of the quantityX,

X = π

4
√
pq

(26)

which has already been noticed by Berry and Tabor (1977). Therefore the level spacings
S also take on only the integer multiple values ofX. The distributionP(S) is no longer
smooth, but becomes a sum of the delta functions. Berry and Tabor (1977) introduced the
discrete Poissonian model

PX(n) = (1− exp(−X)) exp(−nX) (27)

wheren = 0, 1, . . . , and tested it forp = 5 andq = 7 for the lowest 5000 levels and found
a good agreement.
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Figure 3. We show the histograms for the lowest 107, 108 and 109 levels, in (a), (b) and (c),
respectively, near the originS = 0. Hereα = π/3. The bin size shrinks with energy, such that
in the bin there are always approximatelyNb ≈ 10 000 spacings. The deviations are clearly
much bigger than statistically expected±σ error.

Our numerical calculations forp = 21 andq = 22 at high energies show that their
modeldoes notapply. In figure 4 we show the results for the three windows. The (discrete)
distribution is certainly not Poissonian (27), but does not seem to change the shape with
energy, which is, however, not true, as we shall see shortly. In fact, the probabilities (in
delta spikes) decrease very slowly with energy, building up the main delta spike atS = 0
(which extends outside the plots), which is the only one that survives the limitE→∞.

Connors and Keating (1997) have recently studied the square billiardp = q = 1,

Em,n = m2+ n2 (28)

and demonstrated analytically the deviation from the Poissonian model. Letr2(n) denote
the number of possibilities to write the natural numbern as a sum of the squares of two
natural numbers, which is nothing but the degeneracy of the (not unfolded, but actual)
energy. With the definition

B2(n) = 0 if r2(n) = 0 and 1 otherwise (29)
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Figure 4. We show the discrete level spacing distributions for the rational rectangle billiard
with p = 21 andq = 22 for the windowsO1–O3 in (a)–(c), respectively. They obviously
disagree with the Poissonian theoretical model (27). The delta spikes slowly decrease with
energy, building up the asymptotically only one non-vanishing delta peak atS = 0. See text.

we can writeP(0) = PX(0) as

PX(0) = 6n(r2(n)− B2(n))

6nr2(n)
. (30)

The denominator is the number of all level spacings, which at largen is just equal to the
number of all levels, in the numerator is the number of all terms contributing toPX(0);
they are those whose energy can be expressed in at least two ways. It can be shown that
the average value ofr2(n) is equal to

〈r2(n)〉 = lim
n→∞

r2(n)

n
= π

4
. (31)

Using the old result of Landau (1908)

〈B2(n)〉 = lim
n→∞

B2(n)

n
= C√

ln(n)
(32)
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Figure 5. We test numerically the relationship (34) for 1−PX(0) for the rational rectangle with
p = 21 andq = 22 for the energies 5×108–to 1011. In (b) we show the enlarged region where
the data lie. The agreement is seen to be very good. However,B2 is not yet equal to zero as
we expect to happen when we are sufficiently far in the asymptotic region ofN →∞. B2→ 0
impliesPX(0)→ 1.

yields

1− PX(0) = A√
ln(N)

(33)

implying that P(S) has asymptotically, whenE → ∞, N → ∞ only one delta peak,
namely atS = 0, so that the limiting (discrete) level spacing distribution for the square
billiard is justP(S) = δ(S), which is a little surprising.

Now we postulate that for a rational rectangle billiard withp, q 6= 1 the same functional
dependence (33) applies as well. We assume the functional form

1− PX(0) = B1√
ln(N)

+ B2 (34)

and test it numerically, as shown in figure 5. The agreement is surprisingly good. However,
the extrapolated constantB2 is not yet seen to be zero, probably because we are not yet far
enough in the asymptotic region (sufficiently largeN ). Having observed the slow building up
of the zero-spacing delta spike we also notice that the shape of the level spacing distribution
as displayed in figure 4 seems to be roughly preserved with increasing energy. Therefore we
have analysed the ratiosPX(1)/PX(2) andPX(28)/PX(29), establishing their approximate
constancy (independence of energy) as manifested in figure 6.

3.4. The neighbourhood of rational rectangles

It is interesting and important to see and understand what happens if we deform a rational
rectangle billiard to an irrational one. The shape parameterα is an irrational number in a
vicinity of the rational oneq/p, written in the form

α = q + ε
p

. (35)



4680 M Robnik and G Veble

Figure 6. In (a) we show the ratioPX(1)/PX(2) versus lnE and in (b) the ratioPX(28)/PX(29)
versus lnE. Both seem to be approximately constant (independent of energy), implying the
approximate preservation of the shape ofPX(S) with the energyE.

The unfolded energy (using only the leading term of the Weyl formula (23), as before) reads

E = π

4
√
p(q + ε) (pm

2+ (q + ε)n2). (36)

To the first order inε we write

E = Erat+ δE (37)

whereErat denotes the energy of the rational rectangle, equation (25), and

δE = ε
(
βn2− E

2q

)
β = X = π

4
√
pq
. (38)

We calculate the distribution of the energy shift dw/dδ E near the energyE ≈ Erat when
the rectangle is slightly distorted away from its rational shape. One can write

dw

dδE
= dw

dn

dn

dδE

dn

dδE
= C√

δE + εE
2q

. (39)

The right-hand expression is obtained from (38), and dw/dn is the distribution of the
quantum numbern near the given energyE. By geometrical considerations one finds the
distribution of the levels along an arc of the contourE = β(pm2+qn2) = constant, namely

dw

dl
= D

|∇E| |∇E| = 2β
√
p2m2+ q2n2 (40)

where the latter result follows by considering the area of the space(m, n) in which the levels
are uniformly distributed which is spanned by the given arc of length dl when the energyE
is slightly increased. Using the relationships dl2 = dm2+dn2 and dE = ∂E

∂m
dm+ ∂E

∂n
dn = 0,

we find

dl

dn
= 1

pm

√
p2m2+ q2n2. (41)
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From the last two equations one concludes

dw

dn
= dw

dl

dl

dn
= D

2βpm
m =

√
E

βp
− q

p
n2 (42)

and upon inserting this into equation (39) and expressingn in terms ofδE, we finally obtain
the probability distribution of the energy shiftsδE,

dw

dδ E
= 1

π

1√
02− (δE)2

0 = εE

2q
(43)

where the final value of the proportionality constant∝ C,D has been set by normalizing the
final probability distribution. Note that the only parameter in this distribution is0 = εE/2q,
which is practically constant for the energyE inside a spectral stretch, such as in our three
windowsO1,O2,O3 which have the lengthEstart/1000.

From the calculation of the (distribution of the) energy shifts we now calculate the
distribution of the level spacing shiftsδS, defined by

S = Srat+ δS (44)

whereSrat is the level spacing of the rational billiard. We are going to study its broadening
when the rectangle is distorted away from the rational shape according to (35). Of course,
the δS is the difference of the two energy shifts,

δS = δE2− δE1. (45)

Clearly, we have to find the distribution of the difference of two variablesδE1 andδE2, for
which we assume that they are statistically independent and have the same distribution (43).
Then we have

dw

dδS
=
∫

dw

dδE
(x)

dw

dδE
(x + δS) dx (46)

the result being even function ofδS. For the positive values ofδS it reads

dw

dδS
= 1

π2

∫ 0−δS

−0

dx√
(02− x2)(02− (x + δS)2)

(47)

which can be expressed in terms of the elliptic functions (Gradshteyn and Ryzhik 1994,
p 290),

dw

dδS
= 1

π20
F

π
2
,

√
1−

(
δS

20

)2
 = 1

π20
K

√1−
(
δS

20

)2
 . (48)

An inspection of numerical profiles of the dw/dδS distribution near a rationalSrat shows
that indeed the distribution is symmetric (even inδS), at sufficiently largep, q. At
lower values ofp, q we observe strong asymmetry, which is caused by the fact that we
have neglected the degeneracies, as will soon become clear. Indeed, Poissonian spectra
have many degeneracies, and non-generic rational billiards even more so. It is therefore
quite essential—at least in our rectangle billiards—to take into account all multiplets
(=degeneracies of higher order), to achieve agreement with the numerical values of dw/dδS
aroundS = Srat.

In figure 7 we show a sketch of the situation in which there are two consecutive energy
contours atε = 0 (full curve, with a pair of degenerate levels, followed by a triplet at slightly
higher energy, namely bySrat higher) and the shifted energy contours (broken curve,ε 6= 0).
By l we shall denote the multiplet (l = 1 for singlet,l = 2 for doublet,l = 3 for triplet, and
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Figure 7. We show the sketch of the situation in the plane(m, n) of having two consecutive
energy curves atε = 0 (full curve, with a pair of degenerate levels, followed by a triplet at
slightly higher energy, namely bySrat higher) and the distorted energy contours (broken lines,
ε 6= 0). By l we shall denote the multiplet (l = 1 for singlet,l = 2 for doublet,l = 3 for triplet,
and so on). In general members of a multiplet are shifted to slightly different distorted energy
contours (broken) whenε 6= 0.

so on), and byu(l) we shall denote the relative fraction of all thel multiplets within the
number of all multiplets. Thusu(l) = (number ofl multiplets)/(number of all multiplets).
Then byδEli we shall denote the shifts of the levels in the lower energy shell (withl levels,
see figure 7), and byδEui those of the higher one (l′ multiplet). Clearly, with the known
energy shifts we calculate the shift of the level spacingSrat as

δS = mini=1,...,l′(δE
u
i )−maxi=1,...,l(δE

l
i ) (49)

or in another notation

δS = δEur − δElt (δEur 6 δEui , ∀i 6= r) ∧ (δElt > δEli , ∀i 6= t). (50)

The distribution of the level spacing shifts between two multipletsl and l′ can then be
written down symbolically

Wl,l′ =
∑
r

∑
t

∫
D(δEur − δElt − δS)Prob(δEur 6 δEui )Prob(δElt > δEli )

×w(δEur )w(δElt )dδEur dδElt (51)

whereD(x) is the Dirac delta function here, to be distinguished from the notationδ reserved
for the shifts. We now measure the energy shifts in units of0 from equation (43), so that
in these units

µ(δE) = dw

dδE
= 1

π

1√
1− (δE)2

. (52)
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It is easy then to calculate

Prob(δEur 6 δEui ) =
∏
i 6=r

∫ 1

δEur

µ(δEui )dδEi =
(

1

2
− 1

π
arcsinδEur

)l′−1

(53)

and

Prob(δElt > δEli ) =
∏
i 6=t

∫ δElt

−1
µ(δEli )dδEi =

(
1

2
+ 1

π
arcsinδElt

)l−1

. (54)

The quantities (51) become

Wl,l′ = ll′
∫ b

a

µ(δE)µ(δS + δE)
(

1

2
+ 1

π
arcsinδE

)l−1

×
(

1

2
− 1

π
arcsin(δS + δE)

)l′−1

dδE (55)

where the integration limits are

(a, b) = (−1− δS, 1) if δS < 0

(a, b) = (−1, 1− δS) if δS > 0.
(56)

Now by substitutionδE′ = δE + δS/2, and by rearranging one finds

Wl,l′ = ll′
∫ 1−|δS|/2

−1+|δS|/2
dδ E′µ

(
δS

2
+ δE′

)
µ

(
δS

2
− δE′

)
×
(

1

2
− 1

π
arcsin

(
δS

2
− δE′

))l−1(1

2
− 1

π
arcsin

(
δS

2
+ δE′

))l′−1

(57)

and we obtain the final general formula for the level spacing shift distribution, denoted by
dw/dδ S,

dw

dδS
=
∑
l

∑
l′
u(l)u(l′)Wl,l′(δS) (58)

whereWl,l′ is given in equation (57). This final result can now be tested against the
numerical (empirical) distribution. WhilstWl,l′ are calculated in a straightforward manner,
the quantitiesu(l) must be known either theoretically or at least empirically. In the former
case one has to solve difficult problems in the number theory, whilst in the latter case one
can easily obtain them by inspecting the spectrum and counting the multiplets. This is what
we have done.

In figure 8 we show the case of the irrational triangle close to the rational one, namely
p = 21, q = 22, andε = 10−12. The data are taken from the windowO3, i.e.Estart= 1011,
and we have 108 levels. The level spacing shiftδS is measured in units of 20, where
0 = εE/(2q). As we clearly see we have a logarithmic singularity atδS = 0 (typical of
the elliptic functions) and discontinuities at the limits of definitionδ = ±20. The agreement
of data with the theoretical prediction of equation (58) is very good. The distribution is
strongly asymmetrical, which is a consequence of the existence of the multiplets withl = 2
and higher. Indeed, if we go to the rational rectangles of higher degree, for example
p = 339,q = 355, we find the trend to symmetrical distribution predicted by (47) or (48),
as shown in figure 9. This trend towards symmetry is precisely due to the smaller influence
of multiplets l > 2, which are not accounted for in deriving the equations (47) and (48) as
a special casel = 1 andl′ = 1 of equation (58).
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Figure 8. The spacing shiftδS = S−Srat distribution for the irrational trianglep = 21, q = 22
andε = 10−12 (see equation (35)). The data are taken from the windowO3, i.e.Estart= 1011,
and we have approximately 108 levels in the statistics.δS is measured in units of 20, where
0 = εE/(2q) and is constant for all objects in the histogram. The agreement of data with
the theoretical prediction (58) (dotted) is very good. The distribution is strongly asymmetrical
which is due to the existence of the multipletsl > 2. The observed deviations are probably due
to the correlations between the multiplets and among the members of a multiplet, which are not
accounted for in (58). Also, the corrections inε higher than linear (see equation (38)) are not
accounted for, but are probably of lesser importance than the correlations in this context.

We should comment that the small deviations seen in figure 8 are definitely due to
the not-accounted-for correlations within thel-multiplets. Probably the effect of neglecting
terms higher than linear inε (see equation (38)) is smaller and less important in this context.
This has been confirmed by random generation of the multiplets where a perfect agreement
with (58) has been found. We have not pursued these theoretical refinements any further.

3.5. The fluctuations inP(S) in the vicinity of the rational rectangles

Now we are in the position to explain the large fluctuations observed inP(S) for the
irrational rectangles, with α = (q + ε)/p of equation (35), as uncovered in figures 2 and
3. From the analysis of section 3.4 it is clear that the criterion for the closeness to a
rational rectangle billiard must be qualified in terms of the two quantities0 andβ = X,
equations (38), (39), (47), (48) and (58). The spectrum will obviously exhibit the properties
of the rational billiards whenever the rational spacing of level spacingsβ = X will be larger
than the half-width 20 of the spacings shift distribution:

20 6 β = X (59)
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Figure 9. As in figure 8 but withp = 339 and q = 355. The distribution now is
almost symmetrical, which is a consequence of the smaller influence of the multipletsl > 2.
Therefore the general formula (58) is well approximated by the symmetrical one (even inδS) in
equation (48), becausel = l′ = 1 is a good approximation. The agreement with equation (58)
is now perfect.

or
εE

q
6 π

4
√
pq
. (60)

On the other hand, the scale on which we observeP(S) must also be sufficiently small in
order to enable the observability of the almost-rationality ofα: the width of the1S-intervals
(bins) must be smaller thanβ,

1S < β. (61)

However, the size of the bins may not be too small, since otherwise we lose the statistical
significance. We wantNb level spacings per one bin of size1S. Since the unfolded energy
E is (on the average) equal to the number of all levels, and this is also the number of all
level spacings, and since all the spacings are effectively distributed within the interval ofS

of order unity (exponential Poissonian decay at largeS), we have the condition

1S ≈ Nb

E
. (62)

Therefore our equation (61) can be rewritten as

Nb

E
<

π

4
√
pq

(63)
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whereE is the unfolded energy (roughly equal to the number of levels, starting from the
ground state).

In equation (63) one can recognize the criterion for the largest pair(p, q) that can be
observed at the given energyE, whilst in equation (60) we identify the condition for the
largestε to be observed as a rational-likeP(S). So we ask the question: What is the
probability that we can find—up to the largestp—a suitably smallε? From the definition
of α andε in (35) one has

ε = αp − [αp] (64)

where [x] denotes the integer part of the real numberx. It is known from the number
theory (Hardy and Wright 1983) thatε is uniformly distributed on the interval [0, 1) when
all possiblep are considered providedα is an irrational number. We shall assume thatε′

are indeed uniformly distributed on the stated interval (which is certainly acceptable, since
the algorithm (64) is the basis of the congruent generators of random numbers).

The probability of findingε′, at fixed value ofp, smaller than the maximal allowedε
of equation (60) is just equal toε. The probability of finding at least one suchε′ with all
possiblep′ smaller than the maximal allowed onep, can be estimated in the following way.
(1− ε) is the probability that we cannot find a suitableε′ for a chosenp′, and therefore
the probability of not finding a suitableε′ for all possiblep′ 6 p is just equal to(1− ε)p.
The probability of finding at least one suitableε′ is complementary to it, so equal to

Wp
ε = 1− (1− ε)p. (65)

Now using the estimates for the largest possibleε and largest possiblep, from equations (60)
and (63), consideringq ≈ p and neglecting all the constants (of order 1), we obtain
(assuming small productεp),

Wp
ε ≈ εp ≈

1

Nb
. (66)

The estimate of this probability is not a sharp number but rather an assessment of the
order of magnitude and it certainly is not a probability for fluctuations. The influence of
the rational numbers does not disappear abruptly but continuously, and also we do not
detect only the presence of one nearby rational number but of many of them. Therefore
equation (66) is a criterion rather than a probability for the fluctuations inP(S) to occur. As
such it is obviously independent of the energyE. It does not directly predict the existence
of fluctuations, but tells us, that the fluctuations must exist at any energyE if they are
observed at certain energy, provided we keep the number of spacings in a bin constant and
equal toNb. This phenomenon is clearly manifested in figures 2 and 3. In the latter we
haveNb = 10 000 data per bin and we see that the fluctuations are much larger than the
statistically expected relative error of 1/

√
Nb = 0.01. In the analysis of Casatiet al (1985)

there were onlyNb = 1000 objects per bin, so according to equation (66) the estimated
fluctuations should be bigger by a factor of 10 rather than

√
10, which is confirmed in

figure 2.
On the other hand, if the bin size1S is kept fixed, the estimate (66) becomes

Wε ≈ 1

E1S
(67)

and it is now obvious that the fluctuations decrease with increasing energy (which also is
the semiclassical limit).
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Figure 10. We show the delta statistics1(L) for the three energy windowsO1,O2 andO3,
defined in section 3.1, for the irrational rectangle withα = π/3.

3.6. Long-range correlations

The level spacing distributionP(S) contains information on short-range correlations, whilst
the long-range correlations can be most conveniently analysed by the delta statistics1(L), or
more generally, by theE(k, L) statistics. For definitions and mutual relations see section 2.

In figure 10 we show1(L) for the three energy windowsO1−O3 defined in section 3.1.
Up to L 6 Lmax we see good agreement with the Poissonian valueL/15. The saturation
appears atL > Lmax, whereLmax = h̄/(T0〈δE〉) is dynamically determined according to
Berry’s (1985) theory of spectral rigidity (based on the Gutzwiller periodic orbit theory).
HereT0 is the period of the shortest classical periodic orbit, and scalesT0 ∝ 1/

√
E, whilst

〈1E〉 is the mean energy level spacing, which according to the Weyl formula (20) is
independent of the energy in the limit of sufficiently largeE. Consequently,

Lmax∝
√
E. (68)

The estimate agrees well with our data in figure 10, and also the estimated saturation value
1∞,

1∞ = 0.0947
√
E. (69)

In the windowO3 the agreement of1(L) with the data is at least up toL ≈ 103 and
increases with energy. Thus in the strict semiclassical limit ofE→∞ we indeed have the
Poissonian behaviour at an arbitrarily large scaleL.



4688 M Robnik and G Veble

Figure 11. The functionsE(k, L) for the irrational rectangle billiardα = π/3, for the highest
energy windowO3 defined in section 3.1. In (a) we have 06 k 6 20, (b) k = 103, (c) k = 104,
and (d) k = 105. The agreement fork andL up to approximately 103 is excellent.

In figure 11 we show theE(k, L) statistics in the highest energy windowO3, and the
agreement with Poissonian theory is excellent up to the values ofk of orderkmax≈ Lmax≈
103. At higher k, k > kmax, the accuracy breaks down for the same reasons as in1(L)

for L > Lmax. Of course, there is a connection between the two quantities as explained in
section 2.

When we return to the rational rectangles, we expect again some deviations from the
Poissonian values, just in analogy withP(S) described earlier. We consider again the
rational caseα = 22

21, sop = 21, q = 22. In figure 12 one can see that1(L) rises more
steeply than Poissonian at smallL, just due to the abundant degeneracies, then it becomes
quite Poissonian, and saturates at a certain value1∞ at largeL > Lmax. In figure 13 we
also show theE(k, L) statistics. Similarly, for smallk andL we expect deviations from the
Poissonian values (12). Indeed, Connors and Keating (1997) have shown that the average
square of degeneracy for the squarep = q = 1 is equal to

〈r2
2(n)〉 = A ln(n) (70)

and from our experience withP(S) we can expect something similar forp, q 6= 1. Therefore
at

k, L 6
√

ln(n) (71)
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Figure 12. 1(L) statistics for the rational rectangle billiardα = 22
21 in the energy windowO1

defined in section 3.1. On the right we show a magnified part at smallL.

Figure 13. E(k, L) statistics for the rational rectangleα = 22
21: 0 6 k 6 20 in (a), k = 103 in

(b), k = 104 in (c) and k = 106 in (d), all for the energy windowO3 defined in section 3.1.
The agreement is good only nearL ≈ k ≈ 104.
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we predict deviations of data from the Poissonian values, which is confirmed in figure 13.
For largerk there is some good agreement, andE(k, L) curves are more similar to the
Poissonian curves, but nevertheless a little wider, which again is precisely due to the
degeneracies and clustering of the levels. Since after unfolding the average spacing is 1,
the clustering implies that the average distance between the clusters must increase, which
means thatE(k, L) with maximum atL ≈ k must widen. For the intermediatek, but still
smaller thankmax we find considerable agreement with the Poissonian values, whilst for
k ≈ kmax≈ Lmax the functionsE(k, L) become narrower than the Poissonian, quite similar
to in the irrational billiards, which has the explained dynamical origin (Berry 1985). It
should be emphasized again, however, that for sufficiently largeL, in the limit E → ∞,
implying Lmax∝

√
E →∞, theE(k, L) statistics behave in the Poissonian way (12), and

so do all other statistical measures, since they are all connected to (expressible by) them.

3.7. Reduced mode number fluctuations

In section 2 we introduced and defined the reduced mode numberW(x), equation (17),
which is regarded as a stochastic variable having a certain limiting probability distribution
P(W) when the number of objects contained in the statistics goes to infinity. This quantity
is interesting because in a sense it contains information for the spectral statistical measures
at all scales. What laws can we expect forP(W) for classically integrable system with
Poissonian statistics (up to the rangeL 6 Lmax), and what statistics in other systems,
generic, and fully chaotic?

We have seen that classically integrable systems like our irrational rectangles exhibit
Poissonian statistics up to the energy rangesL 6 Lmax, where the dynamical saturation
effect (Berry 1985) sets in. It is also important to recall that in the semiclassical limit
E → ∞ (or in the original physical units ¯h → 0), Lmax also goes to infinity, so that
Poissonian behaviour can be found everywhere and on arbitrarily large scales. Also, it is
intuitively quite obvious that the complete randomness of the Poissonian spectra, absence of
all correlations, should imply a GaussianP(W) (cf Steiner 1994, Aurichet al 1994), with
prescribed dispersion, in our units unit dispersion. Given the prescribed dispersion (variance)
the Gaussian distributionP(W) is the one having the largest entropy, so corresponds to the
most random processW(x). In the literature (Bleheret al 1993) we have definite examples
of non-GaussianP(W) for classically integrable systems, which means also non-Poissonian
P(W). According to the Steiner conjecture the distribution should be non-Gaussian except
if and only if the underlying classical system is fully chaotic (ergodic, mixing andK). So
why is non-Gaussian (and thus non-Poissonian) behaviour ofP(W) now compatible with
the Poissonian statistics up toL 6 Lmax?

The puzzling paradox we are facing here can be easily resolved. A short calculation
shows that for the largest (unfolded) energyLmax =

√
E � E = N(E). This means that

when studying the correlations at scalesL equal up to the maximum energy of the spectral
stretch,we are always in the saturation regimeof L > Lmax, and therefore we cannot observe
anything universal,except for the extreme case of having the maximum entropy distribution,
described by the GaussianP(W), corresponding to the classically ergodic systems. This
is precisely the Steiner Conjecture (1994). (See also the recent review by Steiner and
co-workers (Aurichet al 1997).)

Since this criterion is so important we want to express it in terms of the original physical
units for two-dimensional billiard systems:

Lmax= h̄

T0〈1E〉 6 N(E) (72)
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Figure 14. We show the reduced mode number probability distributionP(W), defined in
equation (17), for two irrational rectangle billiards,α = π/3 in (a) and α = (

√
5− 1)/2 in

(b), by using the lowest 109 energy levels starting from the ground state. For comparison we
show the Gaussian distribution with the same dispersion (light curved line).P(W) is clearly
non-Gaussian.

whereT0 is the period of the shortest classical periodic orbit of (full) geometrical lengthl0,
andN(E) is the total number of levels up to the energyE. Therefore one has

h̄

T0
6 E. (73)

Now T0 = l0/
√

2E/m, m being the mass of the billiard particle, and we find the condition

E > 2h̄2

ml20
(74)

which at fixedh̄ andl0 is satisfied at all energiesE, including the ground state. So, indeed,
in two-dimensional billiards the largest energy scales are always in the dynamical saturation
(non-universal) regime ofL > Lmax. The extreme case of classical ergodicity and Gaussian
P(W) is stated by the Steiner conjecture.

In our rectangle case we can explain definition (17) also in the following geometrical
terms. For ourunfolded spectral staircase functionN(E) we know that its average part
goes asE (this is the area inside a quarter of the ellipse of constantE in the plane
(m, n)). So,Nfluc(E) = N(E) − E. This quantity should then be reduced in terms of the
local dispersion, which goes as a square root of the number of objects contributing to the
randomness ofN(E): but the number of such objects is the number of levels inside a strip
of width approximately one and length

√
E (one quarter of the circumference of the ellipse

E = constant). The levels at the grid points(m, n) deep inside the ellipse are well ordered
and do not affect the fluctuations ofNfluc. So we obtain

W(E) = N(E)− E
E1/4

(75)

which of course agrees with (17), apart from unimportant proportionality constants.
In figure 14 we show the results for our two irrational rectangle billiards, namely for

α = π/3 andα = (
√

5− 1)/2. For comparison we plot the Gaussian distribution with
the same dispersion as the numerical histograms and this gives a clear and statistically
significant evidence for non-GaussianP(W). In the calculation we have taken into account
all the lowest 109 levels, starting at the ground state.
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4. The two-dimensional torus billiard

The two-dimensional torus billiard is defined by the solutions of the Helmholtz equation on
a unit square with periodic boundary conditions, and the energy spectrum is equal to

En1,n2 = (n1− α1)
2+ (n2− α2)

2 (76)

wheren1, n2 are any integer numbers 0,±1,±2, . . . , while α1 andα2 are the phases and
they are real numbers on the interval [0, 1). They can be generated either by the prescribed
change in the phase upon traversing a circuit around the torus, or, for instance, by switching
on the magnetic flux. The details of the physical origin of equation (76) are not important
here and will not be discussed further.

The Weyl formula for the two-dimensional torus billiard is, according to (20), just

N(E) = constant× E (77)

because there is no boundary at all (L,K = 0). The unfolded energy reads

Ern1,n2
= π((n1− α1)

2+ (n2− α2)
2). (78)

This is correct because the mean density of grid points in the(n1, n2) plane is one, and thus
inside a circle of radius((n1− α1)

2+ (n2− α2)
2)1/2 we find on average exactlyErn1,n2

grid
points.

We shall now analyse the statistical properties of this energy spectrum. To start with we
choose some irrational values for the phase parameters, namelyα1 = 1/e andα2 = 1/π .
In figure 15 we show, in analogy with the irrational rectangle of figure 1, the level spacing
distributionsP(S), demonstrating the trend towards the Poissonian lawP(S) = exp(−S).
The width of the bins here is fixed and equal to1S = 0.001. However, if we fix the
number of objects in one bin, approximately equal toNb ≈ 10 000, keeping it fixed at all
energies, we observe precisely the same behaviour as in figure 3 for the irrational rectangle.
As shown in figure 16 the fluctuations are much bigger than statistically expected (relative
size≈ 1/

√
Nb ≈ 0.01). The phenomenon is again due to the closeness to some rational

parameter values where the game of natural numbers reappears.
Indeed choosing some rational values for the phasesαi = qi/pi , wherei = 1, 2 and

each pairqi, pi has no common divisor, we calculate the unfolded energy (78) as

E = π
[
p1p2(n

2
1+ n2

2)− 2(q1p2n1+ q2p1n2)

p1p2
+
(
q1

p1

)2

+
(
q2

p2

)2
]

(79)

which, disregarding the simple additive constant, leads to the level spacings which are only
integer multiples of the quantityXt = π

p1p2
. This again suggests the discrete Poissonian

model, like in the rectangle billiard of section 3.3, so

PXt (n) = (1− exp(−Xt)) exp(−nXt). (80)

Similarly to as in the rectangle billiard, we could show that the model does not apply to
the rational tori (figure 17). The delta spikes atS 6= 0 decrease as 1/

√
lnE (figure 18),

although we are not yet far enough in the asymptotic region of sufficiently largeN to see
that the constantB2 is zero, as we anticipate, but the shape is roughly preserved, i.e. the
relative heights of the delta peaks remain approximately constant (figure 19).

The next question is: What happens to the delta spikes when we distort the torus a little
away from the rational one(αr1, α

r
2), by (δα1, δα2)? The delta peaks broaden in a similar
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Figure 15. P(S) for the irrational torusα1 = 1/e and α2 = 1/π , in three different energy
windowsO1,O2 andO3, as defined in section 3.1, in (a), (b) and (c), respectively. The bin
size is fixed and equal to1S = 0.001. In each case in the right picture we show enlarged part
nearS = 0, together with the expected±σ error (dotted), and the theoretical Poissonian curve
(full curve).
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Figure 16. P(S) for the irrational torusα1 = 1/e and α2 = 1/π , for the 107, 108 and 109

lowest energy levels, in (a), (b) and (c), respectively. The bin size is changing with the energy
(window) in such a way that the number of objects per binNb is approximately constant and
equal toNb = 10 000. The observed fluctuations are clearly much bigger than the statistically
expected ones, indicated by the±σ dispersion band (dotted), while the mean behaviour is in
agreement with the Poissonian curveP(S) = exp(−S) (light full curve).

way to in the rectangle. In fact, it is quite easy to show that one obtains a similar formula
for the distribution of the energy shiftsδE as for the rectangle, equation (43),

dw

dδE
= 1

π

1√
02
t − (δE)2

0t = 2|δα|
√
πE (81)

except that0t ∝
√
E rather than0 ∝ E. Here we have denoted by|δα| the length

of the deformation vector(δα1, δα2). Using this information, and similar reasoning as in
section 3.4, we arrive at equations (47) and (48), the only difference being the definition
of 0, which in this case must be equal to0t , defined in the above equation. We have
tested this distribution against the data and a similarly good agreement was found as in
figure 9, therefore we do not show the results. A similar analysis to in section 3.4, taking
into account the higher multiplets, etc, can be performed with the final result exactly as
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Figure 17. P(S) for the rational torus withα1 = 1
5 andα2 = 1

7 , for the energy windowsO1 -
O3 in (a–c), respectively, in comparison with the Poissonian model (80) (full curve). Obviously,
the model does not apply.

equation (58), except that instead of0 we have to use0t , of course. It is clear that the
anomalous fluctuations inP(S) of figure 16 are precisely due to the closeness of some
rational torus to the irrational one, in excellent analogy with the rectangle billiards. We
have also confirmed (but do not show the results) that the1(L) statistics andE(k, L)
statistics behave in rational torus in precise analogy with the rational rectangle billiard.

In figure 20 we show the results for the delta statistics for the irrational torus. Up to
the saturation regimeL 6 Lmax the agreement with the Poissonian lawL/15 is excellent.
The saturation occurs at a value approximately twice greater thanL, because on the torus
the shortest classical periodic orbit is twice as short as in the rectangle. In figure 21 we plot
theE(k, L) statistics. The interpretation of the results is just the same as in the rectangle
billiard of section 3.6.

Finally we analyse the reduced mode number fluctuations, using definition (75). Bleher
et al (1993) have shown rigorously that the limiting distributionP(W) does exist, and that it
has the non-Gaussian tailsP(W) ∝ exp(−W 4). Their predictions are tested in figure 22. To
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Figure 18. We plot 1− PXt (0) for the rational torus withα1 = 1
5 and α2 = 1

7 , versus

1/
√

lnE, to test the relationship (34), whose validity is herewith confirmed. In (b) we show the
enlarged region where the data lie. The value of the extrapolated constantB2 is not yet zero,
probably because we are not yet far enough in the asymptotic regionN →∞. B2→ 0 implies
PX(0)→ 1.

Figure 19. The rational torus withα1 = 1
5 and α2 = 1

7 : We plot the ratiosPXt (1)/PXt (2)
(a) and PXt (28)/PXt (29) (b) versus lnE, showing that the shape of the distribution (80) is
approximately preserved as energy increases.

obtain an accurate and statistically reliable confirmation we would have to go substantially
higher in energy than 109, in order to increase appreciably the number of objects in the tail
of P(W).
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Figure 20. 1(L) statistics for the irrational torus withα1 = 1/e andα2 = 1/π , for the three
energy windowsO1,O2 andO3, as defined in section 3.1.

5. The circle billiard

As the third model system we have chosen the unit circle billiard. We shall look at
the solutions of the Helmholtz equation (19) with Dirichlet boundary conditions. The
eigenfunctions are (in polar coordinatesr andφ)

ψν,s(r, φ) = Jν(ξν,sr){cos(νφ), sin(νφ)} (82)

where Jν is the Bessel function (of the first kind) ofνth order andξν,s is its sth
zero. ν is the absolute value of the angular momentum (quantum number). (Of course,
Jν(x) = (−1)νJ−ν(x) = J|ν|(x), and instead of cos/sin functions we could use exp(±iνφ).)
The energy spectrum is

E = ξ2
ν,s (83)

and is doubly degenerate for allν, except forν = 0. To remove the degeneracy we consider
the desymmetrized billiard, namely the semicircle billiard, whose eigenstates are precisely
the odd eigenstates (with respect to the reflection across the lineφ = 0) of the full circle
billiard. Thus, we consider only the eigenstates whose angular part is described by sin(νφ),
and thereforeν = 1, 2, . . . , ands = 1, 2, . . . . The Weyl formula (20) obtains the form

N(E) = 1

8
E − 2+ π

4π

√
E + 1

8
. (84)
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Figure 21. E(k, L) statistics for the irrational torus withα1 = 1/e and α2 = 1/π , for the
energy windowO3. In (a) 0 6 k 6 20, in (b) k = 102, in (c) k = 104, and in (d) k = 106.
The agreement is excellent up tok ≈ L ≈ 104.

The constantK stems from the contribution12 × 1
6 due to the curvature and 2× 1

48 due to
two right angles.

We have calculated 1.5× 107 energy levels for the unit semicircle billiard. In doing so
we have carefully checked the numerical routines to ensure that no levels were missed, also
by using the Weyl formula (84).

In figure 23 we showP(S) for the semicircle billiard. The general observation is that
there is a clear convergence of data towards the Poissonian behaviour, with the fluctuations
being of the order as statistically expected. The only unexpected feature are the quite big
spikes at integer and half-integer values ofS, clearly visible in figure 23(a). It can be shown
by the analysis of the asymptotical properties of the zeros of the Bessel functions that such
enhanced fluctuations must occur. Due to the lack of space we omit the presentation of this
analysis.

As for the long-range correlations for the semicircle we can reconfirm the goodness of
the Poissonian model, as manifested in figure 24 for the delta statistics1(L), for scales
L 6 Lmax∝

√
E, whereE = 1.5× 107 andLmax is equal to≈ 3000.

In figure 25 theE(k, L) statistics for the semicircle is also seen to follow the Poissonian
law up to the saturation scalekmax≈ Lmax. For 06 k 6 20 we see the almost perfect agree-
ment with Poissonian value (12), whilst atL ≈ k ≈ 100 we detect the first notable deviations
which articulate at largerk andL in the narrowing of the curves, due to the level clustering.
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Figure 22. We show the reduced mode number distributionP(W) for the tori: α =
(0.465 8, 0.018 14) in (a), α = (0.343 7, 0.430 4) in (b) andα = 0 in (c), as chosen in (Bleher
et al 1993). In each case we have used 109 levels from ground state upwards. For comparison
we show the Gaussian distribution with the same dispersion (light dotted). The behaviour of
P(W) is obviously not Gaussian, and it seems to decay faster than exp(−W 2), qualitatively in
agreement with (Bleheret al 1993), namely∝ exp(−W4).

Finally we define the reduced mode numberW(x) as in the general equation (17), and
specifically for the billiards in equation (75), and study its distributionP(W), using 1.5×107

energy levels for the unit semicircle. The result is shown in figure 26, clearly exhibiting
deviations from the Gaussian distribution of the same dispersion.

6. Conclusions and discussion

The primary conclusion of this work is that the Poissonian statistical model, defined in
section 2, is in fact an excellent approximation for almost all classically integrable systems.
By almost all we mean the generic members of the class of integrable systems, the set of
exceptions having a small or even vanishing measure in the set. In the rectangle and torus
billiards these exceptions arise whenever the billiard is a rational billiard, in which case,
for example the level spacing distribution is not a smooth one, but a sum of delta functions
positioned at only the integer multiple values of certain basic quantityX. In these rational
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Figure 23. P(S) for the unit semicircle billiard: The bin size is1S = 0.001, and we have used
1.5×107 energy levels, starting from the ground state. The agreement with Poissonian statistics
(light full curve) is excellent, including the size of fluctuations being within the±σ error band
(dotted). The small spikes at integer and half-integerS are explained in the text.

cases even the discrete Poissonian model does not apply: In fact, we even find that all the
delta spikes go to zero as∝ 1/

√
ln(E), with energyE, so that in the asymptoticalP(S) only

the zeroS delta spike survives and we haveP(S) = δ(S). We have explained the details
of such anomalous behaviour, and also presented the theory of what happens if we slightly
deform the billiard away from its rational shape. The delta spikes broaden, and have a highly
non-trivial distribution, described by the theoretical level spacing shift distribution (58) of
section 3.4, which agrees well with the numerical data for the rectangle as demonstrated in
figures 7 and 8. Of course, the rational numbers are dense in the set of real numbers, and
so every irrational billiard is arbitrarily close to a given rational numberq/p of sufficiently
high order, with largeq ≈ p � 1. Therefore for sufficiently small energies we always see
the influence of nearby rational billiards, manifesting itself for example in the anomalous
fluctuations in the level spacing distributionP(S) as discovered by Casatiet al (1985). We
have shown, that for the irrational billiards, at sufficiently high energies, in order to escape
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Figure 24. 1(L) statistics for the unit semicircle billiard for the first 105, 106 and 107 energy
levels (from bottom to top): the agreement with the Poissonian valueL/15 is very good up to
the saturation scaleLmax∝

√
E. The saturation value also scales as1∞ ∝

√
E.

the influence of the rational billiards, we observe the Poissonian statistics in almost perfect
agreement with theory in allE(k, L) statistics, and in particular also inP(S), if the bin size
1S is kept fixed and not changing with energy. This holds true, however, only at energy
ranges up toL 6 Lmax ∝

√
E, because atL > Lmax we find the saturation phenomena

in absolute agreement with the dynamical theory of Berry (1985), which in our work is
brilliantly confirmed.

We have also pointed out that in considering the reduced mode number (W ) fluctuations
and their distributionP(W) we are in fact looking at statistical measures at all scales. It
is then argued that in doing so we are always in the saturation regimeL � Lmax and
thusP(W) can just be anything, in particular non-Gaussian. A truly Poissonian process
W(x) would imply a GaussianP(W), which is not observed just because of the dynamical
saturation regime at such largest energy scales. The non-trivial statement is then the Steiner
conjecture (1994) saying that only in the extreme of the classically fully chaotic systems
P(W) becomes a Gaussian distribution, with unit dispersion, and so the most random one
among all the possible ones. Thus, the conclusion is that the classically chaotic systems
indeed have the most random spectra.

Our findings have also been illustrated in cases of the torus billiard and circle billiard,
confirming all the aspects given above. In circle, the approach to the Poissonian statistics
is the fastest, just because it is far away from non-generic (rational) billiards.

We must comment on two related papers. One is by Casatiet al (1984), where the
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Figure 25. E(k, L) statistics for the unit semicircle billiard for the lowest 1.5× 107 energy
levels. In (a) 0 6 k 6 20, (b) k ≈ 100 and (c) k ≈ 1000. The agreement is good up to
k ≈ L ≈ 102.

authors show that integrable systems have (unfolded) energy spectra whose algorithmic
complexity in the sense of Kolmogorov is zero, which again should imply that the spectra
are not random and therefore should not be Poissonian. Their analysis is particularly careful
for the case of rectangle billiards. This is in contrast to the case of random matrix theories
where the spectrum of a matrix drawn from one of the ensembles (GOE, GUE, GSE),
according to Casatiet al (1984), has positive algorithmic complexity, in agreement with the
notion of randomness of such spectra, especially in view of the Bohigas conjecture, where
such random models are supposed to apply. It is our opinion that the rigorous meaning and
the relationship between the Poissonian behaviour and zero algorithmic complexity must still
be assessed and clearly understood. Quite generally, the meaning of algorithmic complexity
and its relation to the concept of randomness is likewise still open for the discussion. One
possible answer to the paradox might be in realizing that in each specific dynamical system
at fixed value of ¯h we always have saturation regime at certainL > Lmax, affecting the
algorithmic complexity—which is in fact defined only in the limitL → ∞—rendering
it zero, perhaps, whilst in random matrices (of infinite dimension) there are no saturation
effects.

The second paper is a recent preprint by Marklof (1998), where he proves rigorously
that generically the rectangle billiards do not follow the Berry–Tabor conjecture (1977),
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Figure 26. The reduced mode number distributionP(W) for the semicircle for the lowest
1.5× 107 energy levels (heavy curve), compared with the Gaussian distribution with the same
dispersion (light curve). The deviation from the Gaussian is definitely statistically reliable, but
is theoretically unknown.

except for local (= short-range) statistics, where the behaviour is indeed Poissonian, thereby
confirming the results by Casatiet al (1984). This statement refers to the typical cases in
the parameter space, so it refers to a whole ensemble of systems. However, for individual
dynamical systems nothing has been proven so far. It is clear that in an individual system
there will always be saturation effects, and therefore rigorously the statistics can never be
globally Poissonian at any fixed ¯h or finite energy. However, it converges to the Poissonian
at larger and larger energy ranges when ¯h→ 0 or when the energy (the number of levels)
goes to infinity, in such a way that we always haveL� Lmax.

We may conclude with the bold statement that we almost fully understand the classically
integrable systems. They have Poissonian statistics, in the semiclassical limit, at energy
rangesL up to the upper scaleL 6 Lmax(E) as a function of the unfolded energyE. The
vicinity of a rational system might become more and more visible even at higher energies if
we are closer to some rational system, but ultimately we see the approach to the Poissonian
behaviour.

There is, however, still a lot of work to be done, especially in the rigorous sense. We
want to know more details in the rational cases, we want to understand the limitingP(W) in
different systems, along with the important results of Bleheret al (1993). On the practical
side, the understanding of the classically integrable class of quantal systems in terms of the
Poissonian statistics is sufficient to construct the theories for the generic systems, having
assumed that we understand the classically chaotic quantal universality classes. A recent
account of these topics was offered in Robnik and Prosen (1997) and Robnik (1997).
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